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Abstract. High Harmonic Fast Wave (HHFW) heating experiments on NSTX have been
observed to be accompanied by significant edge ion heating (Ti >> Te). This heating is found to
be anisotropic with Tperp > Tpar.  Simultaneously, coherent oscillations have been detected with
an edge Langmuir probe. The oscillations are consistent with parametric decay of the incident
fast wave (ω > 13ωci) into ion Bernstein waves and an unobserved ion-cyclotron quasi-mode.
The observation of anisotropic heating is consistent with Bernstein wave damping and the
Bernstein waves should completely damp in the plasma periphery as they propagate toward a
cyclotron harmonic resonance. The number of daughter waves is found to increase with rf power
and to increase as the incident wave’s toroidal wavelength increases. The frequencies of the
daughter wave are separated by the edge ion cyclotron frequency. Theoretical calculations of the
threshold for this decay in uniform plasma indicate an extremely small value of incident power
should be required to drive the instability. While such decays are commonly observed at lower
harmonics in conventional ICRF heating scenarios they usually do not involve the loss of
significant wave power from the pump wave. On NSTX an estimate of the power loss can be
found by calculating the minimum power required to support the edge ion heating (presumed to
come from the decay Bernstein wave). This calculation indicates at least 20-30% of the incident
rf power ends up as decay waves.
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INTRODUCTION

High Harmonic Fast Wave (HHFW) heating and current drive has been
explored on NSTX since its inception. The interest in HHFW is motivated by the need
for electron heating and current drive to aid in steady-state non-inductive operation, a
crucial component in demonstrating the attractiveness of the spherical tokamak (ST)
reactor concept.  HHFW was predicted to be an attractive option to meet this need[1],
particularly for the high beta plasmas that naturally occur in ST’s. As previously
reported [2], efficient electron heating and current drive via HHFW have been found
on NSTX. Some anomalies were observed in the details of the results, particularly in
the dependence on antenna phasing. Faster wave phasings, smaller toroidal mode
number, were found to be less effective than expected [3]. With the installation of a



new diagnostic to measure the edge ion temperature and plasma rotation [4], a new
piece of puzzling evidence was found. The edge ion temperature (over ~ 10 – 15 cm of
the minor radius inside the periphery of the plasma), as measured by Doppler
broadened line emission from both impurity and majority ion species, was seen to
increase during the rf pulse. This temperature increase indicated a Maxwellian heating
in the perpendicular component of the ion distribution function. Direct ion heating
from the fast wave is not expected at such a high harmonic and low edge temperature.
In searching for an explanation of this heating, which was reminiscent of that observed
in direct launch Ion Bernstein Wave heating (IBW) [5], an edge probe was installed on
NSTX and connected to a spectrum analyzer. Frequency peaks that were consistent
with IBW originating via parametric decay were observed. In the following we will
review parametric decay theory as applied to NSTX HHFW heating and then describe
in detail the experimental observations. The decay mechanism postulated here has
been observed in laboratory plasmas [6,7]

PARAMETRIC DECAY THEORY

The theory of parametric decay in the ion cyclotron range of frequencies has been
elaborated in a paper by Porkolab [8]. If one examines the Vlasov equation in the
presence of a linear rf wave
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the solutions of the zero order orbit equations are:
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As can be seen, the particle drift orbits are mass dependent, therefore the ions and
electrons will drift apart creating a zeroeth order charge separation oscillating at the
driving frequency ω0. This charge separation represents a source of free energy that
can drive instabilities in the plasma. Looking at the first order perturbation to Eq. 1 the
ansatz
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is introduced. This assumption is essentially a transformation to the oscillating frame
of reference in which there is no induced drift. Also, the driving field is assumed to
have infinite wavelength, k0=0. The first order equation is then
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and β is a phase angle which is unimportant. The solution to the first order equation
(4) can be found by the method of characteristics, i.e.
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By expanding the exponential in a Bessel series
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the integration of (6) is simplified. The charge density is given by
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Because of the oscillating exponential in (6) the charge density also exhibits
oscillation with beat frequencies nω0. Further, since the electrons and ion charge
densities oscillate by different amounts the earlier mentioned charge separation
appears. By Fourier transforming, the following expression for the charge density is
obtained:
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where χ is the linear susceptibility. Substituting into Poisson’s equation yields
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combining (8) and (9) yields the dispersion relation. Clearly, it is an infinite set of
equations of order n. Making the simplest non-trivial assumption, for µ<1, we can
keep only three modes ω, (ω±ω0). Further, assuming that (ω, k) is a low frequency ion
mode and |ω±ω0| >> ω the three coupled equations can be solved to yield [9]
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where ε(ω,k) = 1+Σχj(ω,k) is the dielectric constant, χj is the susceptibility of species
j, and µ is the parametric coupling constant defined in equation (5). In the following
the side band mode ω- = ω−ω0 , will be assumed to be an ion Bernstein wave and the
low frequency mode may be either another Bernstein wave or a quasi-mode (a
dissipative mode where ω−Ω~k||vti or ω= k||vte which exists only when driven by the
pump). Examining µ for the parameters of NSTX, ω∼13Ωi, and it is clear that the
dominant term is the second one, due to the polarization drift
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The electron coupling term has been dropped since ω/Ωe << 1.  The instability will
grow when the right hand side is positive. The first possibility is ε(ω,k) = 0,
corresponding to a resonant lower frequency wave. It is very difficult to match both
frequency, ω + ω− =ω0, and wavenumber, k + k− = 0 for two resonant IBW waves. The
other way to get the right hand side large is for χi(ω) to be large. This can happen
when ω = nΩI, where n is an integer. This is the ion-quasi mode, quasi since ε(ω) ≠ 0.
The quasi mode has no k dependence so satisfying k matching is trivial. With χi large
only the electron susceptibilities remain and for ω=ΩI they can be written as
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positive when 1-(k⊥ρe)
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satisfied. In fig. 1 we show a numerical evaluation of
eq. 11 for NSTX edge parameters, Te = Ti = 50 eV, ne

= 2 x 1018 m-3, B = 2.3 kG, k||= Ωi/0.7vte ,f0 = 30 MHz
and an assumed Ey = 1 statvolt/cm. This value of k||

was found to maximize the growth rate at ω=Ωi.
Different values of k|| maximize the growth rate at the

harmonics. The first four harmonics are seen to be unstable for NSTX parameters.



EXPERIMENTAL RESULTS FROM NSTX

The NSTX HHFW system has been described previously [10]. A Langmuir
probe was inserted between two of the
antenna modules and is placed in the scrape-
off plasma in the shadow of the rf protection
tiles. The probe was connected via a high
frequency fiber optic link to a spectrum
analyzer. A filter is placed in-line to
attenuate the 30 MHz rf by ~30 dB in order
to protect the analyzer. The spectrum
analyzer was swept in frequency during the
rf pulse. A typical spectrum obtained during
HHFW heating on NSTX is shown in fig. 2.

Three lower sidebands are clearly
seen. The frequency separation between peaks corresponds to the edge ion cyclotron
frequency. When the toroidal magnetic field was lowered from 4.5 kG to 3.0 kG the
frequency separation decreased as expected if the side bands for IBW decay waves.
The number of sidebands is found to increase with applied rf power; for example in
He discharges with kT = 14 m-1, the second peak appears for powers greater than 0.65
MW and the third for powers greater than 1.3 MW. At fixed rf power the number of
side bands increases with decreasing toroidal wave number applied to the HHFW
antenna, suggesting that the fast wave electric field in the surface of the plasma
increases with the launched wavelength. A side band above the pump frequency is
occasionally seen at the highest applied rf power levels. 

The edge ion temperature measurement is obtained from toroidal and poloidal
viewing arrays of the Edge

Rotation Diagnostic (ERD), that
measures the Doppler broadened
emission from both HeI and CIII ions
[4]. By projecting these views onto the
perpendicular and parallel directions a bi-
Maxwellian temperature is found as
shown in fig. 3 for helium ions. The
perpendicular temperature increases
strongly with rf power while the parallel
temperature remains close to the local
electron temperature. This perpendicular
ion temperature increase is observed in
the outer, ~10-15 cm, region of the
plasma [11].



DISCUSSION

The probe spectra indicate the presence of IBW waves in the NSTX edge plasmas.
Detection of decay peaks is not un-common in ICRF experiments [12-14]. Only in the
case of direct Bernstein wave excitation [13] has it been inferred that significant
amounts of power are involved. By solving the IBW dispersion relation for the
observed frequencies it is possible to predict where the IBW power will be deposited
in the plasma. The IBW wave is predicted to propagate inward until it reaches a
cyclotron harmonic where all of the power will be damped. For NSTX this means that
the heating should take place in the outer ~10 cm of the plasma in agreement with the
ERD observations. The power in the low frequency quasi-mode is locally damped
since the mode is non-propagating but, since the partitioning of power between the
two side bands is proportional to their frequency, less than ten percent of the decay
power is in the quasi-mode. The IBW wave deposits its energy into the low energy
(<vti) part of the ion distribution function, hence the distribution function is expected
to remain essentially Maxwellian. The IBW wave heats the perpendicular part of the
ion distribution function, so a bi-Maxwellian response can be expected. This was seen
in earlier direct IBW experiments [9] and, again, is in agreement with the ERD
measurement. It is nearly impossible to get an estimate of the power lost into decay
waves from the probe measurements; an absolute calibration of the probe response
would be required the probe would need to be scanned everywhere in the edge plasma.
Therefore, in order to get an estimate of the amount of rf power that is being
channeled into the decay waves, the following ansatz is made: all the decay power
flows to the ions and the ions then lose all their energy to the cooler electrons via
collisions and the electrons lose all of their energy out of the plasma in a time short
compared to the ion relaxation time (in these plasmas this time is of order 1 ms). By

this ansatz an estimate of any one of these processes yields a value for all three. Since
the collisional power transfer from the ions to electrons:
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knowing only the radial dependence of the temperature difference and density, it is the
easiest of the three to obtain. In fig. 4 we show sample temperature profiles and values
of the integral of Qie(r) over the outer part of the plasma where Ti exceeds Te for
helium plasmas.

It can be seen that at high power levels as much as 25% of the applied rf is showing
up in edge heating power. The deviation from a straight line fit in fig4a may be
indicative of either an overestimate of the edge heating power at low applied power
levels due to using the full density in the calculation or an underestimate at high values
of the applied heating power if some of the edge ion energy leaves the plasma directly
without transferring to the electrons. To some extent the later effect must be occurring
since the ERD measurements also indicate a change in the edge rotation consistent
with an edge electric field that would be produced from ions being lost directly from
the edge.

SUMMARY

Heating of the perpendicular component of the ion distribution function for the
outer part of the NSTX plasma has been observed during HHFW heating and current
drive experiments. An interpretation in terms of parametric decay of the incident fast
wave into ion Bernstein waves and an ion-quasi mode is presented. Frequency
components consistent with IBW are observed on a spectrum analyzer connected to a
langmuir probe inserted in the scrap-off plasma. The theory is presented and a low
threshold in power is calculated for NSTX parameters. The ion Bernstein wave is
expected to damp in the outer 10-15 cm of the plasma radius and heat the ions
perpendicular component in agreement with the experimental observations.
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